亚洲中文字幕特级毛片-亚洲制服丝袜中文字幕-亚洲制服丝袜在线观看-亚洲制服欧美自拍另类-免费一级黄色-免费一级国产生活片

掃碼關注公眾號           掃碼咨詢技術支持           掃碼咨詢技術服務
  
客服熱線:400-901-9800  客服QQ:4009019800  技術答疑  技術支持  質量反饋  人才招聘  關于我們  聯系我們
国产成人精品无码片区在线观看,亚洲欧美日韩精品久久奇米色影视,国产漂亮白嫩美女在线观看
首頁 > 產品中心 > 標記一抗 > 產品信息
Rabbit Anti-Dengue Virus NS1 /PE-Cy5.5 Conjugated antibody (bs-14267R-PE-Cy5.5)
訂購熱線:400-901-9800
訂購郵箱:sales@www.chomd.com.cn
訂購QQ:  400-901-9800
技術支持:techsupport@www.chomd.com.cn
說 明 書: 100ul  
100ul/2980.00元
大包裝/詢價
產品編號 bs-14267R-PE-Cy5.5
英文名稱1 Rabbit Anti-Dengue Virus NS1 /PE-Cy5.5 Conjugated antibody
中文名稱 PE-Cy5.5標記的登革熱病毒2糖蛋白NS1抗體
別    名 polyprotein [Dengue virus 2]; Genome polyprotein; Dengue Virus NS1 glycoprotein; Dengue Virus non-structural protein 1; Dengue NS1; POLG_DEN26; Non-structural protein 1;   
規格價格 100ul/2980元 購買        大包裝/詢價
說 明 書 100ul  
研究領域 細菌及病毒  糖蛋白  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應
產品應用 ICC=1:50-200 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 40kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human Dengue Virus NS1
亞    型 IgG
純化方法 affinity purified by Protein A
儲 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產品介紹 background:
NS1 is one of 7 Dengue Virus non-structural proteins which are thought to be involved in viral replication. NS1 exists as a monomer in its immature form but is rapidly processed in the endoplasmic reticulum to form a stable dimer. A small amount of NS1 remains associated with intracellular organelles where it is thought to be involved in viral replication. The rest of NS1 is found either associated with the plasma membrane or secreted as a soluble hexadimer. NS1 is essential for viral viability but its precise biological function is unknown. Antibodies raised in response to NS1 in viral infection can cross react with cell surface antigens on epithelial cells and platelets and this has been implicated in the development of Dengue Hemorrhagic fever.

Function:
prM acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is matured in the last step of virion assembly, presumably to avoid catastrophic activation of the viral fusion peptide induced by the acidic pH of the trans-Golgi network. After cleavage by host furin, the pr peptide is released in the extracellular medium and small envelope protein M and envelope protein E homodimers are dissociated.
Envelope protein E binding to host cell surface receptor is followed by virus internalization through clathrin-mediated endocytosis. Envelope protein E is subsequently involved in membrane fusion between virion and host late endosomes. Synthesized as a homodimer with prM which acts as a chaperone for envelope protein E. After cleavage of prM, envelope protein E dissociate from small envelope protein M and homodimerizes.
Non-structural protein 1 is involved in virus replication and regulation of the innate immune response. Soluble and membrane-associated NS1 may activate human complement and induce host vascular leakage. This effect might explain the clinical manifestations of dengue hemorrhagic fever and dengue shock syndrome.
Non-structural protein 2A may be involved viral RNA replication and capsid assembly (Potential).
Non-structural protein 2B is a required cofactor for the serine protease function of NS3.
Serine protease NS3 displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS2B, performs its autocleavage and cleaves the polyprotein at dibasic sites in the cytoplasm: C-prM, NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-2K and NS4B-NS5. NS3 RNA helicase binds RNA and unwinds dsRNA in the 3' to 5' direction.
Non-structural protein 4A induces host endoplasmic reticulum membrane rearrangements leading to the formation of virus-induced membranous vesicles hosting the dsRNA and polymerase, functioning as a replication complex. NS4A might also regulate the ATPase activity of the NS3 helicase.
Peptide 2k functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter.
Non-structural protein 4B inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway (By similarity).
RNA-directed RNA polymerase NS5 replicates the viral (+) and (-) genome, and performs the capping of genomes in the cytoplasm. NS5 methylates viral RNA cap at guanine N-7 and ribose 2'-O positions. Besides its role in genome replication, also prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signaling pathway. Inhibits host TYK2 and STAT2 phosphorylation, thereby preventing activation of JAK-STAT signaling pathway.

Subunit:
Capsid protein C forms homodimers. prM and envelope protein E form heterodimers in the endoplasmic reticulum and Golgi. In immature particles, there are 60 icosaedrally organized trimeric spikes on the surface. Each spike consists of three heterodimers of envelope protein M precursor (prM) and envelope protein E. NS1 forms homodimers as well as homohexamers when secreted. NS1 may interact with NS4A. NS3 and NS2B form a heterodimer. NS3 is the catalytic subunit, whereas NS2B strongly stimulates the latter, acting as a cofactor. In the absence of the NS2B, NS3 protease is unfolded and inactive. NS3 interacts with unphosphorylated NS5; this interaction stimulates NS5 guanylyltransferase activity. NS5 interacts with host STAT2; this interaction inhibits the phosphorylation of the latter, and, when all viral proteins are present (polyprotein), targets STAT2 for degradation.

Subcellular Location:
Capsid protein C: Virion (Potential).
Peptide pr: Secreted.
Small envelope protein M: Virion membrane; Multi-pass membrane protein. Host endoplasmic reticulum membrane; Multi-pass membrane protein.
Envelope protein E: Virion membrane; Multi-pass membrane protein. Host endoplasmic reticulum membrane; Multi-pass membrane protein.
Non-structural protein 1: Secreted. Host endoplasmic reticulum membrane; Peripheral membrane protein; Lumenal side.
Non-structural protein 2A-alpha: Host endoplasmic reticulum membrane; Multi-pass membrane protein (Potential).
Non-structural protein 2A: Host endoplasmic reticulum membrane; Multi-pass membrane protein (Potential).
Serine protease subunit NS2B: Host endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side.
Serine protease NS3: Host endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side. Note=Remains non-covalently associated to NS3 protease.
Non-structural protein 4A: Host endoplasmic reticulum membrane; Multi-pass membrane protein. Note=Located in RE-associated vesicles hosting the replication complex.
Non-structural protein 4B: Host endoplasmic reticulum membrane; Multi-pass membrane protein.
RNA-directed RNA polymerase NS5: Host endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side. Host nucleus. Note=Located in RE-associated vesicles hosting the replication complex.

Post-translational modifications:
Specific enzymatic cleavages in vivo yield mature proteins. The nascent protein C contains a C-terminal hydrophobic domain that act as a signal sequence for translocation of prM into the lumen of the ER. Mature protein C is cleaved at a site upstream of this hydrophobic domain by NS3. prM is cleaved in post-Golgi vesicles by a host furin, releasing the mature small envelope protein M, and peptide pr. Non-structural protein 2A-alpha, a C-terminally truncated form of non-structural protein 2A, results from partial cleavage by NS3. Peptide 2K acts as a signal sequence and is removed from the N-terminus of NS4B by the host signal peptidase in the ER lumen. Signal cleavage at the 2K-4B site requires a prior NS3 protease-mediated cleavage at the 4A-2K site.
RNA-directed RNA polymerase NS5 is phosphorylated on serines residues. This phosphorylation may trigger NS5 nuclear localization.
Envelope protein E and non-structural protein 1 are N-glycosylated.

Similarity:
In the N-terminal section; belongs to the class I-like SAM-binding methyltransferase superfamily. mRNA cap 0-1 NS5-type methyltransferase family.
Contains 1 helicase ATP-binding domain.
Contains 1 helicase C-terminal domain.
Contains 1 mRNA cap 0-1 NS5-type MT domain.
Contains 1 peptidase S7 domain.
Contains 1 RdRp catalytic domain.

Database links:

Entrez Gene: 1494449 Dengue virus 2

SwissProt: P29990 Dengue Virus 2



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權所有 2004-2026 www.www.chomd.com.cn 北京博奧森生物技術有限公司
通過國際質量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫療器械-質量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網安備110107000727號
主站蜘蛛池模板: 久久久久久久精品成人热色戒岬奈奈美 | 中文字幕超碰人妻综| 一级毛片中文字幕内射| 日韩中文字幕制服丝袜黑色丝袜 | 巨茎CgGay猛男1069| 91老熟女玩小伙网| 亚洲护士在线一卡在线播放| 久久久久综合久久精品| 99精品国产一区二区三区入| 丝袜脚交一区二区兔费T下载| 国内国外日产一区二区福利| 一区二区在线电影在线观| 久热香蕉精品视频在线播放网站| 岛国一二区一二区| 熟女人妻久久久一区二区蜜桃老牛| 国产色婷婷精品综合在线观| 亚洲乱码一二三四区乱码麻豆 | 亚洲狠狠色丁香婷婷综合久久,亚洲大片AV | 国内精品久久久久久99懂色 | 精品久久久久香蕉网_99精品国产在热久久国产乱| 国产女人aaa级久久久级精品一区二区 | 一本大道一卡二卡三卡免费 小说 一本大道一卡二卡三卡免费图片 一本大道在线视频一区二区三区四区 | 亚洲AV无码成人精品区一本婷婷| 九九精品国产99精品,亚洲综合一区二 | 人妻少妇偷人精品视频不卡婚外情第二季 | 久久综合给合精欧精品欧| 97久久精品人妻人人搡人人玩,99国内 | 国产无遮挡又黄又爽免费网站网站 | 亚洲一区二区三区在线观看ww | 久久久久综合久久精品 | 日韩精品无码免费视频| a v字幕无码| 久久久久精品午夜大片| 亚洲一区欧洲一区常理6分钟| 狠狠色丁香婷婷久久综合不卡_欧美日韩| 一区二区三区免费视频播放器下载 | 亚洲精品美女网站国自产 | 99精品国产在热久久无码人妻网站| 人妻少妇av无码中文字幕| 在线看无码的免费网站母乳爱好挤奶喷奶 - x88AV | 国产成a人片在线观看视频下载,厨房玩朋友|